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Introduction

The initiation and progression of atherosclerosis 
depends on profound dynamic changes in vascular 
biology.1) The endothelium plays a key regulatory 
role in vascular homeostasis. The understanding of 
the mechanisms of endothelial dysfunction is of criti-
cal importance in designing a therapeutic strategy to 
inhibit the atherosclerotic process. Risk factors for 
the progression of atherosclerosis such as diabetes 
mellitus, hypertension, hyperlipidemia, and smoking, 
generally impair endothelial function. These factors 
affect the endothelium from the luminal side of ves-
sels.2) In addition, endothelial cells (ECs) are also 
affected from the basal side extracellularly. However, 
the interaction between the endothelial system and 
other systems outside of vessels has not been well 

explained. The autonomic nervous system (ANS) is 
considered to be one of the potent factors that affects 
the behavior of endothelial function from outside of 
vessels. In this review article, we summarize fi ndings 
concerning the interaction between the endothelium 
and ANS in the pathologic process of atherosclerosis.

Function of Endothelium

The endothelium is a single layer of cells that lines the 
blood vessel lumen, and organizes the growth and 
development of underlying connective tissue cells that 
form the surrounding layers of the blood vessel wall. 
In addition, ECs interact with various circulating fac-
tors in the blood stream and react to these changes 
to maintain homeostasis. The EC layer acts not only 
as a passive barrier to keep cells and proteins from 
escaping freely into the tissue, but also as a source of 
several vasoactive substances. It plays a central role 
in the regulation of vascular tone, thrombosis, and 
infl ammation through the release of a number of para-
crine factors. 

Among the regulatory roles, the main role of the 
endothelium is regulating vascular tone. The primary 
vasodilator released by the endothelium is nitric oxide 
(NO).3) NO is generated from L-arginine by the action 
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screening tools for endothelial testing in humans.13) 
One example is testing endothelial vasomotor func-
tion after reactive hyperemia by pulse amplitude 
tonometry in the fi ngertips (RH-PAT).14) However, 
the results of endothelial function tests are somewhat 
affected by the site and method of measurement. 
Thus, which methods are selected is a critical issue 
for analyses concerning the interrelationship between 
endothelial or vascular function and other systems.

Autonomic Nervous System (ANS)
and Vascular Disease

Both the sympathetic and the parasympathetic ner-
vous systems innervate blood vessel walls and regu-
late contraction and wall tension.15,16) The adrenergic 
nerve endings of the sympathetic nerve fi bers are found 
in the muscular layer of vessel walls (Fig. 1). In con-
trast, cholinergic nerve endings are found both in the 
muscular and endothelial layers. It has been shown in 
many arterial vessels that M3 receptors on the vascu-
lar endothelium are coupled to the formation of NO, 
which causes vasodilation. However, acetylcholine 
causes smooth muscle contraction through smooth 
muscle M3 receptors and M2 receptors when forma-
tion of NO is blocked. Thus, ANS innervation into 
vessel structures controls vascular tone in an intricate 
manner. Consequently, ANS imbalance could be a 
risk factor for cardiovascular disease, and sympa-
thetic nervous activation represents a detrimental 
and maladaptive phenomenon in vascular function 
and structural integrity.17) Enhanced sympathetic activ-
ity induces sustained increase in blood pressure, by 
causing peripheral vasoconstriction, reducing 
venous capacitance, and affecting renal sodium and 
water excretion.18) Sympathetic activity is enhanced 
in depression and anxiety disorders and sufferers are 
reported to be at a higher risk for cardiovascular 
mortality and sudden death.19) Evidence that psycho-
somatic factors may contribute to the development of 
atherosclerosis20) suggests that there may be an 
underlying mechanism whereby activation of the 
sympathetic nervous system adversely impacts the 
process of atherosclerosis.21,22) In addition, Tsuji, et 
al. demonstrated a link between reduced heart rate 
variability and risk of cardiac events.22) Similar to 
these fi ndings, ANS dysfunction may be associated 
with the development of diabetes in healthy adults, 
increasing the risk of atherosclerosis progression.23) 

of endothelial NO synthase (eNOS) in the presence 
of cofactors such as tetra-hydrobiopterin.4) Other 
relaxing factors released by the endothelium include 
endothelium-derived hyperpolarizing factor, prosta-
cyclin, C-type natriuretic factor, 5-hydroxytryptamine 
serotonin, adenosine triphosphate, substance P, and 
acetylcholine.5,6) Additionally, ECs can also produce 
and release vascular constricting factors. Endothelin 
is a potent vasoconstrictor peptide originally isolated 
from ECs. The effect of endothelin is powerful and 
long lasting, in contrast to short-lived prostacyclin 
and NO.7)

The target of factors that regulate vascular tone 
is smooth muscle cells adjacent to the endothelium. 
Other than regulation of vascular tone, the endothe-
lium affects other biological functions via interac-
tions with different cell populations, such as immune 
cells and blood cells. Infl ammation can be thought of 
as a vascular response, where ECs become activated, 
increase leakiness, and enhance leukocyte adhesive-
ness and procoagulant activity.8) ECs actively partic-
ipate in both innate and adaptive immune responses. 
For instance, ECs are one of the fi rst cell types to detect 
foreign pathogens and endogenous metabolite-related 
danger signals in the bloodstream, in which ECs func-
tion as danger signal sensors.9) In addition, ECs also 
induce cytokine production by immune cells, in which 
ECs function as immune regulators either by activat-
ing or suppressing immune cell function.10) The expres-
sion of adhesion molecules leads to the recruitment 
of leukocytes in the process of infl ammation.11)

There are various methods for measuring endo-
thelial function, but the evaluation of ECs is compli-
cated because one modality evaluating endothelial 
function can only assess a specifi c and limited aspect 
among the multi-potencies of the endothelium.12) 
Endothelium-dependent vasomotion has been the most 
widely used clinical endpoint for the assessment of 
endothelial function. Its assessment involves the 
pharmacological and/or physiological stimulation of 
endothelial release of NO and other vasoactive com-
pounds, and often a comparison of vascular response 
to endothelium-independent dilators such as nitro-
glycerin. The most popular method evaluating endo-
thelial function, fl ow-mediated dilation, is a 
measurement of vascular diameter dilation by endo-
thelium-derived NO. A number of new techniques 
have recently been proposed as potentially applicable 
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markers of endothelial function and sympathetic 
activity in healthy subjects. In a study of 314 healthy 
subjects, endothelial function in the brachial artery 
was inversely related to plasma norepinephrine 
level.25) Swierblewska, et al. performed simultane-
ous measurements of vascular function and sympa-
thetic discharge using sympathetic action potentials to 
the muscle vascular bed (MSNA) and RH-PAT.26) The 
authors found that the RH-PAT index was inversely 
related to MSNA (r = −0.8, p = 0.005). The relation-
ships between endothelial dysfunction and ANS imbal-
ance imply a close interrelationship between the 
endothelium and ANS. 

In the setting of pathologic conditions such as hyper-
tension, the interrelationship between the ANS and 
vascular function may contribute to the pathologic 
process. For instance, Gamboa, et al. investigated the 
NO-ANS relationship in essential hypertension.27) 
Endothelial NO is released tonically into the underly-
ing vascular tissues to induce vasodilation. Impairment 
of this process is thought to be an important compo-
nent of endothelial dysfunction described in hypertension. 
However, the impairment of NO availability was 

Thus, the ANS is thought to interact with atheroscle-
rotic risk factors in various ways, which also affects 
the process of atherosclerosis.

Correlations between Impairments in
the ANS and Endothelial Dysfunction

Endothelial dysfunction and ANS imbalance often 
co-exist in the development of various cardiovascular 
disease processes, suggesting that there are complex 
interactions between these two systems. Recently, sev-
eral studies suggested a potential association between 
heart rate variability and endothelial function. We pre-
viously reported a correlation between fl ow-mediated 
dilation and heart rate variability in subjects with 
ischemic heart disease.24) Interestingly, the relationship 
was not present in subjects with diabetes and subjects 
taking beta-blocking agents. The lack of an associa-
tion between endothelial function and the ANS in 
subjects taking beta-blocking agents or subjects with 
diabetes suggests that the hypothesis that the ANS 
affects the state of endothelial function is possible. 
Other groups also suggested a relationship between 
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Fig. 1  Schematic illustrate of interrelationship between nerve terminal, smooth muscle cell and endo-
thelial cell. CGRP: calcitonin gene-related peptide; Ach: acetylcholine; ATP: adenosine triphos-
phate; P2YR: G-protein-coupled P2Y receptors; NA: noradrenalin; NPY: neuropeptide Y; 
NO: nitric oxide; ROS: reactive oxygen species; nNOS: neuronal nitric oxide synthase; eNOS: 
endothelial nitric oxide synthase.
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vation induced by the cold pressor test, a potent non-
barorefl ex sympathoexcitatory stimulus,35) whereas 
modifi cation did occur in older healthy subjects.36) 
Conversely, it has been demonstrated that ANS dener-
vation alters endothelial function in animal studies.37) 
In humans, ANS modulation by alpha2-adrenoreceptor 
agonists has also been shown to improve endothelial 
dysfunction in patients with hypertension.38) These 
fi ndings suggest a contribution of sympathetic ner-
vous tone on the baseline condition of vascular func-
tion. In addition, experimental data suggest that 
exaggerated sympathetic nervous activity modifi es 
other aspects of endothelial function, such as increas-
ing the immunoreactivity of ECs, or promoting the 
uptake of low-density lipoprotein cholesterol by 
ECs.39,40)

Anatomical View of the Effect of the
ANS on the Endothelium

The proximity of the ANS to the endothelium may 
explain the behavior of their interrelationship. ECs 
along the major conduit vessels do not receive direct 
neural innervation from the ANS because of the long 
distances involved. However, ECs in the microvascu-
lature do receive ANS input.37) Non-synaptic trans-
mission is characteristic of autonomic neuroeffector 
junctions, and transmitted substances can reach ECs.41) 
Additionally, it has been shown that transmitters, 
such as adenosine triphosphate (ATP) released from 
varicosities in the perivascular nerve plexus, can act 
on endothelial receptors and modulate endothelial 
function in the microvasculature.42) Draid, et al. demon-
strated that ATP released from nerve terminals medi-
ates hyperpolarization by acting on P2Y receptors on 
the endothelium. The adventitia is a site for this auto-
nomic innervations,43) and it can affect the process of 
endoluminal atherosclerotic progression via several 
mechanisms.44–46) Consequently, insuffi cient adaptation 
of the adventitia may increase the risk of end-organ 
dysfunctions, including infl ammation and thrombosis.

Neurogenic Factor-Mediated Pathway
to the Endothelium

Several reports have demonstrated that neurotrans-
mitters from neural cells can affect the behavior of 
vascular ECs.47) For example, the neurotransmitter 
dopamine is a potent regulator of important signaling 

insuffi cient to cause dysfunction, and the ANS path-
way was considered to be critical for the develop-
ment of the pathologic process of hypertension.28)

In addition to endothelial function, other vascular 
functions were reported to be correlated with the 
state of the ANS. Yeragani, et al. compared vascular 
indices and heart rate and QT variability measures  
in patients with anxiety disorders. They found signif-
icant negative correlations between the R-R interval 
high-frequency power and brachial artery pulse wave 
velocity (r = 0.4−0.65; p = 0.05−0.007).29)

A simple measurement of brachial artery diameter 
may also have predictive value for cardiovascular 
risk, and was recently considered to be a marker of 
vascular function.30) Additionally, it was previously 
reported to be affected by modulation of the ANS. 
Studies using pulsed-Doppler velocimetry revealed 
that the brachial artery dilates on raising the legs 
from the supine position, in the absence of changes in 
blood pressure and heart rate. This dilatation can be 
explained by a refl ex resulting from stimulation of 
cardiopulmonary receptors. In this way, the diameter 
of the brachial artery is controlled mainly by the 
tone of the ANS.31) In contrast, fl ow-mediated dila-
tion, the purview of endothelial function, is also 
reported to be heavily affected by brachial artery 
diameter. Thus, brachial artery diameter represents 
meaningful information refl ecting ANS and vascular 
function. Indeed, brachial artery diameter is reported 
to be useful for risk prediction in atherosclerosis. 
A larger brachial artery diameter is independently 
associated with cardiovascular risk factors and 
increased risk of cardiovascular events.32)

Effect of the ANS on Vascular Function

Several reports have demonstrated an effect originat-
ing from the ANS on vascular function. Hijmering, 
et al. demonstrated that sympathetic stimulation sig-
nifi cantly impairs the fl ow-mediated dilation response 
via an alpha-adrenergic mechanism.33) The inhibitory 
effect of sympathetic activation is limited to shear-
mediated NO release; however, the precise mechanism 
has not been revealed. A similar fi nding was reported 
by Lemitsu, who demonstrated an inhibitory effect 
of exercise-induced sympathetic stimulation on NO 
metabolites in rat heart tissue.34) In contrast, in young 
healthy volunteers, fl ow-mediated dilation in the 
femoral artery was not modifi ed by sympathetic acti-
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cascades of ECs such as the vascular permeability fac-
tor (VPF)/vascular endothelial growth factor (VEGF) 
pathway. Dopamine inhibits VEGF-induced permea-
bility in human umbilical ECs48) through D2 dopamine 
receptors. It induces endocytosis of VEGF receptor-2, 
which is critical for promoting angiogenesis, thereby 
preventing VPF/VEGF binding, receptor phosphory-
lation, and subsequent signaling.49)

Neuropeptide Y (NPY), a sympathetic co-transmitter, 
is the most abundant peptide in the heart and brain. 
It is another example of a neurotransmitter that affects 
ECs (Fig. 1). Nerve activation and ischemia cause the 
release of NPY, resulting in vasoconstriction and 
smooth muscle cell proliferation. The endothelium 
contains NPY receptors, the peptide itself, its mRNA, 
and the NPY-converting enzyme dipeptidyl peptidase 
IV (both protein and mRNA), which terminates Y1 
activity of NPY and cleaves Tyr1-Pro2 from NPY to 
form an angiogenic Y2 agonist, NPY3–36.50) Thus, 
the endothelium is not only the site of action of NPY, 
but also the origin of the autocrine NPY system, 
which, together with the sympathetic nerves, may be 
important in angiogenesis during tissue development 
and repair.51)

Calcitonin gene-related peptide (CGRP) was shown 
to be a potent vasodilator neurotransmitter, and it 
was fi rst reported to be produced in the peripheral 
nerves of rat mesenteric resistance arteries.52) The 
receptors for CGRP have been shown to be located 
in the endothelium,53,54) and CGRP is predominantly 
an endothelium-independent relaxing substance and, 
in most blood vessels, the cAMP-dependent relax-
ations are associated with the opening of KATP and, 
in some instances, BKCa channels.55) CGRPergic 
vasodilator nerves and sympathetic vasoconstrictor 
nerves reciprocally regulate the tone of the mesen-
teric resistance artery.

Some studies attribute a physiologically relevant 
role for neuronal nitric oxide synthase (nNOS) in 
the modulation of systemic arterial pressure,56) as 
nNOS produces NO that affects smooth muscle cell 
relaxation.16)

Pathological Conditions that Affect
or Downregulate ANS Pathways

Pathological conditions that affect or downregulate 
ANS pathways may provide insight into the interrela-
tionship between the ANS and endothelial function.

Mental stress
Mental stress is a powerful stimulus for central sym-
pathetic excitation.57) In addition, mental stress has 
been linked with reduced endothelial function. Thus, 
there may be a link between the ANS and vascular 
function in mental stress. Ghiadoni, et al. reported 
that acute mental stress induced transient endothelial 
dysfunction, lasting up to 4 h, accompanied by blood 
pressure, heart rate, and salivary cortisol increases.58) 
Possibly via a similar mechanism, acute mental stress 
may contribute to cardiovascular disease progression 
via ANS effects on the endothelium.59) Anxiety has also 
been shown to be associated with endothelial dysfunc-
tion via autonomic dysregulation, evaluated by spec-
tral analysis of heart rate variability in 41 subjects.60)

Dysautonomia and postural
tachycardia syndrome
Dysautonomia is any disease or malfunction of the 
ANS. Santambrogio, et al. evaluated 31 patients with 
cerebral dysautonomia to investigate the hemody-
namic effects of the disease. The authors showed that 
blood vessel smooth muscle tone was disturbed, and 
that post-prandial diastolic and systolic blood pressure 
fell markedly by the attenuation of sympathetic nerve 
support.61) However, there are few reports investigat-
ing how this lack of sympathetic nervous input affects 
vascular function. In contrast, postural tachycardia 
syndrome (POTS) is a heterogeneous disorder char-
acterized by an excessive rise in heart rate, and symp-
toms consistent with cerebral hypoperfusion in the 
upright position. The pathological mechanism of POTS 
is autonomic dysfunction, including vagal withdrawal 
with intact vasoactive barorefl exes and sympathoex-
citation, which may contribute to vasomotor insta-
bility and orthostatic intolerance in these patients.62) 
With regard to vascular function, Liao, et al. demon-
strated that abnormally augmented, fl ow-mediated 
dilation and abnormal function of the vascular endo-
thelium may play important roles in POTS in children.63) 
A study reporting that NOS3 alleles, which encode 
the predominant isoform of NOS in the vasculature, 
represent genetic factors associated with POTS also 
supports the contribution of the endothelium to the 
pathology of POTS.64)

Spinal cord injury
Individuals with spinal cord injury (SCI) are also 
at increased risk for cardiovascular disease (CVD) 
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requires further investigation. In addition, little has 
been reported about the effect of alpha-adrenergic 
blocking agents on vascular function.

Renal denervation and vascular function
The renal sympathetic nerves have been identifi ed as 
a major contributor to the complex pathophysiology 
of hypertension in both experimental models and in 
humans.72) Modulation of renal sympathetic-nerve 
activity through catheter-based radiofrequency abla-
tion has been developed based on experimental and 
clinical data, and it is considered to be a robust inter-
vention to modulate systemic ANS tone.73) There 
have been some reports showing that this interven-
tion changes vascular hemodynamics by modifying 
ANS activity. Katayama, et al. demonstrated that renal 
denervation in SHR/NDmcr-cp rats signifi cantly ame-
liorated the impairment of vascular endothelium-
dependent relaxation with acetylcholine. It also 
demonstrated signifi cant attenuation of the increase 
in vascular superoxide levels in SHRcp rats.74) How-
ever, there are few data concerning the effect of renal 
ablation on vascular function. Therefore, further inves-
tigation is warranted. 

Effect of Vascular Function on the ANS

Although the ANS may impact on vascular function, 
the reverse may also be true. However, reports demon-
strating a vascular contribution to regulation of the 
ANS are relatively limited compared with the evi-
dence for an effect of the ANS on vascular function.

Animal experiments showed that removal of the 
endothelium increased the release of norepinephrine 
from sympathetic nerve terminals in rabbit carotid 
artery.75) NO is one important agent that appears to 
modulate sympathetic nervous system activity during 
blood pressure control. Although the mechanisms by 
which NO modulates neuronal activity are unclear, 
research suggests that NO alters neuronal responses 
to excitatory amino acids.76) Experiments in animal 
models, particularly the streptozotocin-induced dia-
betic rat, have shown that reduced nerve blood fl ow 
occurs very early after diabetic induction.77) The 
perfusion defi cit is suffi cient to cause endoneurial 
hypoxia, suggesting that endoneurial hypoxia may 
produce many of the observed morphological and 
biochemical changes in experimental diabetic neu-
ropathy.77) Another report showed that NO acts as a 

compared with their able-bodied counterparts,65) and 
this fi nding suggests an ANS contribution to cardio-
vascular events. SCI induces vascular deconditioning 
below the level of injury, and disrupts supraspinal 
control of the spinal sympathetic circuits that ulti-
mately innervate the adventitial-media layer of blood 
vessels. Consequently, individuals with SCI exhibit 
vascular dysfunction below the lesion characterized 
by a redu ction in conduit artery diameter and blood 
fl ow, increased shear rate and leg vascular resistance, 
and adrenoceptor hyper-responsiveness. Although 
the mechanisms underlying vascular dysfunction fol-
lowing SCI remain to be elucidated, there is emerging 
evidence that blood pressure oscillations, such as 
those occurring in the large majority of individuals 
with SCI, could potentially exacerbate vascular dys-
function. Further to changes in the peripheral conduit 
and resistance vasculature, there is alarming evidence 
for central arterial stiffening in individuals with SCI. 
Such stiffening is likely to contribute to early onset of 
CVD, which is currently the number one cause of 
mortality in patients with SCIs.

Pharmacological or Therapeutic
Interventions to Modify ANS Pathways

Beta-blocking agents
The most popular pharmacological agents used to 
modify the activity of the ANS are beta-adrenergic 
receptor blockade agents. However, the effect of these 
agents on vascular function has not been fully clari-
fi ed. In animal experiments, beta-adrenergic receptor 
blockade may protect ECs from the negative effect of 
heightened sympathetic nerve activity.66) In contrast, 
there are contradictory reports for beta-blocking agent 
administration in humans. For instance, in subjects 
with type 2 diabetes and hypertension, atenolol did 
not improve endothelial function, whereas losartan 
improved endothelial function and decreased oxidative 
stress.67) Other studies generally failed to show a ben-
efi cial effect of beta-adrenergic receptor blockade.68,69) 
In contrast, men treated with atenolol demonstrated a 
decline in circulating endothelin, suggesting a gender-
specifi c benefi cial effect of beta-blocking agents on vas-
cular function.70) Matsuda, et al. also demonstrated that 
treatment with carvedilol for 4 months improved bra-
chial fl ow-mediated dilation among patients with isch-
emic heart disease.71) Thus, the effect of beta-blocking 
agents on vascular function remains controversial and 
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endothelial function. The AngII signaling system is 
present in the brain, and circulating AngII also binds 
to and activates brain neuronal receptors outside of 
the blood-brain barrier in circumventricular organs. 
Moreover, AngII increases the concentration of ROS 
in ECs, leading to the impairment of endothelial 
function.83) Infl ammation is another candidate that 
could explain the interactions between endothelial 
function and the ANS. Vagal nerve stimulation may 
reduce the infl ammatory response, whereas, sympa-
thetic activation may increase the production of 
infl ammatory cells.85) In addition, the presence of 
infl ammation impairs endothelial function.86)

Interaction between Vascular Function 
and the ANS in Subjects with Diabetes

The pathological process of diabetes impairs both vas-
cular function and the ANS. Both vascular and ANS 
dysfunction generally co-exist in the setting of diabe-
tes, and generally progress simultaneously. Thus, it is 
possible that there are interactions between vascular 
function and the ANS in this setting. The possible 
interrelationship may also impact on the pathological 
process of organ damage in diabetes.

In a study of type 2 diabetic subjects, arterial dys-
function with increased pulse wave velocity, carotid 
intima-media thickness, and reduced systemic arterial 
compliance were observed. These vascular parame-
ters correlated with autonomic nervous score, sug-
gesting an interrelationship between the ANS and 
vascular function.87) In addition, in a cohort of 
young, type 1 diabetic subjects without a history of 
hypertension and any evidence of macrovascular dis-
ease, subjects with a high cardiac autonomic neurop-
athy score had signifi cantly higher pulse wave 
velocity compared with subjects with a low score, 
and a negative correlation between pulse wave veloc-
ity and heart rate variation was observed.88) These 
fi ndings may help to explain the high cardiovascular 
mortality seen in diabetic subjects with autonomic 
neuropathy.87) Indeed, impaired cardiac autonomic 
control is statistically signifi cantly related to the 
development of ischemic heart disease among indi-
viduals with diabetes, independent of markers of the 
duration/severity of glucose metabolism impair-
ments.89)

Conversely, hypertension has been implicated as a 
strong risk factor for diabetic distal polyneuropathy.90) 

sympatho-inhibitory substance within the central 
nervous system.78)

Plater, et al. demonstrated that endothelial dys-
function may predispose patients with diabetes to 
impairments in peripheral neural conduction. In 
recently diagnosed patients with diabetes followed 
for 3 years, higher von Willebrand factor levels pre-
dicted a subgroup of patients with diabetes who sub-
sequently developed defi cits in lower limb nerve 
conduction velocity.79) However, the direct effect of 
the endothelium on alterations in neurotransmitter 
release, reuptake, or receptor sensitivity requires fur-
ther investigation.80)

Common Regulating Factors between 
Endothelial Function and the ANS

Evidence from experimental studies indicates that the 
sympathetic nervous system is critically infl uenced by 
the most relevant factors regulating vascular function 
including NO, reactive oxygen species (ROS), endo-
thelin, and the renin-angiotensin system. For exam-
ple, oxidative stress simultaneously affects the ANS 
and vascular function. Increased oxidative stress 
has been documented in specifi c nuclei of the brain 
involved in the regulation of sympathetic control of 
vasomotor tone in hypertensive rats.81) In addition, 
oxidation itself induces neuronal cell death, including 
apoptosis of sympathetic nervous neurons.82) On the 
other hand, oxidative stress impaired vascular func-
tion via endothelial damage.83) Thus, these effects of 
oxidative stress on both two systems may explain the 
basal physiological interrelationship between vascu-
lar function and the ANS.

The oxidative stress reaction above was enhanced 
in the presence of NO. The half-life of NO, and its 
biological activity is critically infl uenced by the pres-
ence of ROS, such as superoxide. This free radical 
rapidly reacts with NO to form the highly reactive 
intermediate peroxynitrite. Peroxynitrite, formed 
from the interaction of superoxide anion with NO, is 
a principal oxidizing agent of the ANS.84) Because 
NO and oxidative stress are present in the vascular 
and nervous environment, peroxynitrite may play a 
critical role in the interrelationship between vascular 
function and the ANS, however, few reports have 
investigated this relationship.

The most potent inducer of oxidative stress, angi-
otensin II (AngII), also affects both the ANS and 
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cation, and a new effective therapeutic strategy against 
atherosclerosis.
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